Fourier analyse ( efterår 2007 - 5 ECTS )
Rammer for udbud
-
Uddannelsessprog:
(se under Undervisnings- og arbejdsform)
-
Niveau:
Grundkursus
-
Semester/kvarter:
1. kvarter.
-
Timer per uge:
-
Deltagerbegrænsning:
Ingen
-
Undervisningssted:
Århus
-
Hovedområde:
Det Naturvidenskabelige Fakultet
-
Udbud ID:
6466
Formål
Fourieranalyse er en matematisk teori om at skrive funktioner som Fourierrækker eller Fourierintegraler. I begge tilfælde drejer det sig om at opbygge funktionerne ud fra de komplekse eksponentialfunktioner. Fourieranalyse er et uundværligt redskab i mange fysiske og tekniske sammenhænge.
Kursets mål er at sætte deltagerne i stand til at forstå og anvende teorien fra Fourierrækker og Fourierintegraler.
Indhold
Periodiske funktioner
Ortonormalsystemer
Punktvis konvergens
Uniform konvergens
Reelle Fourierrækker (sinus- og cosinusrækker)
Definitionen af Fourierintegralet og dets basale egenskaber
Eksempler og anvendelser
Læringsmål
Ved kursets afslutning forventes den studerende inden for kursets
emneområde at kunne
(a) gengive og illustrere definitioner af matematiske begreber
(b) anvende grundlæggende teknikker, resultater og begreber til at
løse foreskrevne opgaver
(c) argumentere for skridtene i opgaveløsningerne
(d) anvende grundæggende teknikker, resultater og begreber på
konkrete eksempler
Faglige forudsætninger
Calculus 1+2 samt Lineær algebra.
Underviser
Prof. Bent Ørsted
Undervisnings- og arbejdsform
4 timers forelæsninger og 3 timers teoretiske øvelser om ugen.
Dansk
Litteratur
Henrik Stetkær: "Mat 11. Fourierrækker" 1994/95.
Albert Boggess and Francis J. Narcowich: A First Course in Wavelets with Fourier Analysis, Prentice Hall, NJ, 2001.
Litteratur
Henrik Stetkær: "Mat 11. Fourierrækker" 1994/95.
Albert Boggess and Francis J. Narcowich: A First Course in Wavelets with Fourier Analysis, Prentice Hall, NJ, 2001.
Skemaplacering (forelæsninger)
Blokpar C, mandag 12-14 + onsdag 12-14
Eksamensterminer
Eksamen: 1. Kvarter
Reeksamen: August
Udbyder
Institut for Matematiske Fag
Indgår i følgende studieordninger
Bacheloruddannelsen i matematik
Indgår i følgende fagpakker
Støttefagspakke til fysik
Valgfrit element i:
Sidefagspakke i matematik med geometri og analyse
Studieordning og bedømmelse
-
Skriftlig, bedømt efter 7-skala med intern censur
-
Skriftlig, bedømt efter 7-skala med intern censur
-
Skriftlig, bedømt efter 7-skala med intern censur
-
Skriftlig, bedømt efter 7-skala med intern censur
-
Skriftlig, bedømt efter 7-skala med intern censur
-
Skriftlig, bedømt efter 7-skala med intern censur
-
Skriftlig, bedømt efter 7-skala med intern censur
-
Skriftlig, bedømt efter 7-skala med intern censur
-
Skriftlig, bedømt efter 7-skala med intern censur
-
Skriftlig, bedømt efter 7-skala med intern censur
-
Skriftlig, bedømt efter 7-skala med intern censur
-
Skriftlig, bedømt efter 7-skala med intern censur
-
Skriftlig, bedømt efter 7-skala med intern censur
-
Skriftlig, bedømt efter 7-skala med intern censur
4 timers skriftlig eksamen med alle sædvanlige hjælpemidler. Bedømmelse efter 7-trinsskalaen og med intern censor. En forudsætning for, at man kan indstille sig til eksamen er, at man har fået godkendt mindst 4 af de afleveringsopgaver, der stilles i løbet af kurset.