Vær opmærksom på at dette website indeholder et arkiv med historiske data. Det aktuelle kursuskatalog findes på kursuskatalog.au.dk

AU kursuskatalog arkiv

[Forside] [Hovedområder] [Perioder] [Udannelser] [Alle kurser på en side]

Diskrete Markov processer (Q4) ( forår 2010 - 5 ECTS )

Rammer for udbud

  • Uddannelsessprog: engelsk (eller dansk)
  • Niveau: Kandidatkursus. 
  • Semester/kvarter: 4. kvarter, forår 2010.
  • Timer per uge: 4.  
  • Deltagerbegrænsning:
  • Undervisningssted: Århus
  • Hovedområde: Det Naturvidenskabelige Fakultet
  • Udbud ID: 17426

Formål

 Formålet med kurset er at give en introduktion til teorien for
Markov processer med tælleligt udfaldsrum og kontinuert tid.

Indhold

Markov processer med tælleligt udfaldsrum og kontinuert tid spiller en vigtig rolle i
mange anvendelser (f.eks. kømodeller, agermodeller, demografiske modeller, netværksmodeller, etc.)
Kurset introducerer de fundamentale definitioner
og begreber for disse processer, og indeholder:

  • Poisson processer
  • Fødsels- og dødsprocesser
  • General teori
  • Chapman-Kolmogorovs ligninger
  • De bagudgående og de fremadgående ligninger
  • Stationære fordelinger
  • Eksempler og anvendelser.

Faglige forudsætninger

 Stokastiske processer.

Underviser

Jørgen Hoffmann-Jørgensen.

 

Undervisnings- og arbejdsform

 4 timers undervisning pr. uge inkl. øvelser.

.

Litteratur

Forelæsningsnoter på engelsk.

Udbyder

Institut for Matematiske Fag.

 

Tilmelding til undervisning

Tilmelding på selvbetjeningen https://mit.au.dk fra d. 1.-15. november 2009. Eftertilmeldinger: Kontakt Oddbjørg Wethelund, oddbjorg@imf.au.dk

Læringsmål

Ved kursets afslutning forventes den studerende inden for kursets emneområde at kunne:

 

  • redegøre for definitionen af en diskret Markov proces,
  • give eksempler på diskrete Markov processer; f.eks Poisson processen og fødsels og dødsprocesser,
  • redegøre for Chapman-Kolmogorov ligningerne og bevise de forlænse og baglænse ligninger,
  • bevise eksistensen af intensitesmatricen og redegøre for dens interpretation,
  • beskrive og bevise strukturen af en diskret Markov proces som en spring Poisson proces ved hjælp af intensitesmatricen,
  • definere begrebet "stationær fordeling" og redegøre for dens interpretation.

Studieordning og bedømmelse


Tilvalgsfag: Matematik og statistik

  • Mundtlig, bedømt efter 7-skala med intern censur


 Kurset evalueres ved en mundtlig eksamen efter 7-trinsskalaen med intern censur.  
Eksamen er af ca. 30 minutters varighed med 30 minutters forberedelse og alle sædvanlige hjælpemidler.